A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations
نویسندگان
چکیده
We introduce a new class of two-dimensional fully nonlinear and weakly dispersive Green-Naghdi equations over varying topography. These new Green-Naghdi systems share the same order of precision as the standard one but have a mathematical structure which makes them much more suitable for the numerical resolution, in particular in the demanding case of two dimensional surfaces. For these new models, we develop a high order, well balanced, and robust numerical code relying on an hybrid finite volume and finite difference splitting approach. The hyperbolic part of the equations is handled with a high-order finite volume scheme allowing for breaking waves and dry areas. The dispersive part is treated with a finite difference approach. Higher order accuracy in space and time is achieved through WENO reconstruction methods and through a SSP-RK time stepping. Particular effort is made to ensure positivity of the water depth. Numerical validations are then performed, involving one and two dimensional cases and showing the ability of the resulting numerical model to handle waves propagation and transformation, wetting and drying; some simple treatments of wave breaking are also included. The resulting numerical code is particularly efficient from a computational point of view and very robust; it can therefore be used to handle complex two dimensional configurations.
منابع مشابه
Optimized Green-Naghdi Equations for the Modelling of Waves Nearshore Transformations
The fully nonlinear and weakly dispersive Green-Naghdi equations for shallow water waves of large amplitude is studied. An hybrid finite volume and finite difference splitting approach is proposed. Numerical validations are then performed in one horizontal dimension.
متن کاملA splitting approach for the fully nonlinear and weakly dispersive Green–Naghdi model
The fully nonlinear and weakly dispersive Green–Naghdi model for shallow water waves of large amplitude is studied. The original model is first recast under a new formulation more suitable for numerical resolution. An hybrid finite volume and finite difference splitting approach is then proposed, which could be adapted to many physical models that are dispersive corrections of hyperbolic system...
متن کاملDerivation and Analysis of a New 2d Green-naghdi System
We derive here a variant of the 2D Green-Naghdi equations that model the propagation of two-directional, nonlinear dispersive waves in shallow water. This new model has the same accuracy as the standard 2D GreenNaghdi equations. Its mathematical interest is that it allows a control of the rotational part of the (vertically averaged) horizontal velocity, which is not the case for the usual Green...
متن کاملA splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model
The fully nonlinear and weakly dispersive Green-Naghdi model for shallow water waves of large amplitude is studied. The original model is first recast under a new formulation more suitable for numerical resolution. An hybrid finite volume and finite difference splitting approach is then proposed. The hyperbolic part of the equations is handled with a high-order finite volume scheme allowing for...
متن کاملDerivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation
A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 282 شماره
صفحات -
تاریخ انتشار 2015